Estimating Search Benefits from Path-Tracking Data: Measurement and Determinants

نویسندگان

  • Stephan Seiler
  • Fabio Pinna
چکیده

We study consumer search behavior in a brick-and-mortar store environment, using a unique data set obtained from radio frequency identification tags, which are attached to supermarket shopping carts. This technology allows us to record consumers’ purchases as well as the time they spent in front of the shelf when contemplating which product to buy, giving us a direct measure of search effort. We estimate a linear regression of price paid on search duration in which search duration is instrumented with a search cost shifter. We show that this regression allows us to recover the marginal return from search in terms of price at the optimal stopping point for the average consumer. Our identification strategy as well as coefficient interpretation are valid for a broad class of search models and we are hence able to remain agnostic about the details of search process, such as search order and search protocol. We estimate an average return from search of $2.10 per minute and explore heterogeneity across consumer types, product categories and category location in the store. We find little difference in the returns from search across product categories, but large differences across consumer types and locations. Our findings suggest that situational factors such as the location of the category or the timing of the search within the shopping trip are more important determinants of search behavior than category characteristics like the number of UPCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

Decentralized and Cooperative Multi-Sensor Multi-Target Tracking With Asynchronous Bearing Measurements

Bearings only tracking is a challenging issue with many applications in military and commercial areas. In distributed multi-sensor multi-target bearings only tracking, sensors are far from each other, but are exchanging data using telecommunication equipment. In addition to the general benefits of distributed systems, this tracking system has another important advantage: if the sensors are suff...

متن کامل

A Bounded Rationality Model of Information Search and Choice in Preference Measurement

It is becoming increasingly easier for researchers and practitioners to collect eye-tracking data during online preference measurement tasks. The authors develop a dynamic discrete choice model of information search and choice under bounded rationality, which they calibrate using a combination of eye-tracking and choice data. Their model extends Gabaix et al.’s (2006) directed cognition model b...

متن کامل

An Effective Path-aware Approach for Keyword Search over Data Graphs

Abstract—Keyword Search is known as a user-friendly alternative for structured languages to retrieve information from graph-structured data. Efficient retrieving of relevant answers to a keyword query and effective ranking of these answers according to their relevance are two main challenges in the keyword search over graph-structured data. In this paper, a novel scoring function is proposed, w...

متن کامل

Comparison of probabilistic least squares and probabilistic multi-hypothesis tracking algorithms for multi-sensor tracking

A key element for successful tracking is knowing from which target each measurement originates. These measurement-to-target associations are generally unavailable, and the tracking problem becomes one of estimating both the assignments and the target states. We present the Probabilistic Least Squares Tracking (msPLST) algorithm for estimating the measurement-to-target assignments and the track ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Marketing Science

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2017